A Comparison of Two Spelling Brain-Computer Interfaces Based on Visual P3 and SSVEP in Locked-In Syndrome
نویسندگان
چکیده
OBJECTIVES We study the applicability of a visual P3-based and a Steady State Visually Evoked Potentials (SSVEP)-based Brain-Computer Interfaces (BCIs) for mental text spelling on a cohort of patients with incomplete Locked-In Syndrome (LIS). METHODS Seven patients performed repeated sessions with each BCI. We assessed BCI performance, mental workload and overall satisfaction for both systems. We also investigated the effect of the quality of life and level of motor impairment on the performance. RESULTS All seven patients were able to achieve an accuracy of 70% or more with the SSVEP-based BCI, compared to 3 patients with the P3-based BCI, showing a better performance with the SSVEP BCI than with the P3 BCI in the studied cohort. Moreover, the better performance of the SSVEP-based BCI was accompanied by a lower mental workload and a higher overall satisfaction. No relationship was found between BCI performance and level of motor impairment or quality of life. CONCLUSION Our results show a better usability of the SSVEP-based BCI than the P3-based one for the sessions performed by the tested population of locked-in patients with respect to all the criteria considered. The study shows the advantage of developing alternative BCIs with respect to the traditional matrix-based P3 speller using different designs and signal modalities such as SSVEPs to build a faster, more accurate, less mentally demanding and more satisfying BCI by testing both types of BCIs on a convenience sample of LIS patients.
منابع مشابه
Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملDevelopment of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملClinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.
Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experime...
متن کاملSteady State Visual Evoked Potential (SSVEP) - based Brain Spelling System with Synchronous and Asynchronous Typing Modes
The paper presents an EEG-based wireless brain-computer interface (BCI) with which subjects can mindspell text on a computer screen. The application is based on detecting steady-state visual evoked potentials (SSVEP) in EEG signals recorded on the scalp of the subject. The performance of the BCI is compared for two different classification paradigms: synchronous and asynchronous modes.
متن کامل